On ‎c‎omputing the general Narumi-Katayama index of some ‎graphs

نویسنده

  • S. Z. Aghamohammadi‎ Department of Mathematics‎, ‎Eslamshahr Branch‎, ‎Islamic Azad‎ ‎University‎, ‎Tehran‎, ‎‎‎Iran.
چکیده مقاله:

‎The Narumi-Katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎Let $G$ be a ‎simple graph with vertex set $V = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $G$‎. ‎The Narumi-Katayama ‎index is defined as $NK(G) = prod_{vin V}d(v)$‎. ‎In this paper,‎ ‎the Narumi-Katayama index is generalized using a $n$-vector $x$‎ ‎and it is denoted by $GNK(G‎, ‎x)$ for a graph $G$‎. ‎Then‎, ‎we obtain ‎some bounds for $GNK$ index of a graph $G$ by terms of clique‎ ‎number and independent number of $G$‎. ‎Also we compute the $GNK$ ‎index of splice and link of two graphs‎. ‎Finally‎, ‎we use from our‎ ‎results to compute the $GNK$ index of a class of ‎dendrimers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On computing the general Narumi-Katayama index of some graphs

The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph with vertex set V = {v1, . . . , vn} and d(v) be the degree of vertex v in the graph G. The Narumi-Katayama index is defined as NK(G) = ∏ v∈V d(v). In this paper, the Narumi-Katayama index is generalized using a n-vector x and it is denoted by GNK(G, x) ...

متن کامل

Narumi-katayama Index of Some Derived Graphs

The Narumi-Katayama index of a graph G is equal to the product of degrees of all the vertices of G. In this paper, we examine the NarumiKatayama index of some derived graphs such as a Mycielski graph, subdivision graphs, double graph, extended double cover graph, thorn graph, subdivision vertex join and edge join graphs.

متن کامل

on ‎c‎omputing the general narumi-katayama index of some ‎graphs

‎the narumi-katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎let $g$ be a ‎simple graph with vertex set $v = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $g$‎. ‎the narumi-katayama ‎index is defined as $nk(g) = prod_{vin v}d(v)$‎. ‎in this paper,‎ ‎the narumi-katayama index is generalized using a $n$-ve...

متن کامل

Narumi-Katayama Index of Total Transformation Graphs

The Narumi-Katayama index of a graph was introduced in 1984 for representing the carbon skeleton of a saturated hydrocarbons and is defined as the product of degrees of all the vertices of the graph. In this paper, we examine the Narumi-Katayama index of different total transformation graphs. MSC (2010): Primary: 05C35; Secondary: 05C07, 05C40

متن کامل

Modified Narumi – Katayama Index

The Narumi–Katayama index of a graph G is equal to the product of the degrees of the vertices of G. In this paper we consider a new version of the Narumi– Katayama index in which each vertex degree d is multiplied d times. We characterize the graphs extremal w.r.t. this new topological index.

متن کامل

On The Narumi-Katayama Index of Splice and Link of graphs

The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G. In this paper we compute this index for Splice and Link of two graphs. At least with use of Link of two graphs, we compute this index for a class of dendrimers. With this method, the NK index for other class of dendrimers can be computed similarly.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 1

صفحات  45- 50

تاریخ انتشار 2015-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023